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Two-color methods of optical control of the thermodynamic temperature of metals subjected to thermal treat-
ment are analyzed. A technique for taking into account the nonmonochromaticity of the photoreception path is
suggested and an analysis of methodological errors of two-color pyrometers with wide spectral ranges is per-
formed by numerical simulation.

Bichromatic Methods. The most widespread of bichromatic methods is the method of spectral ratio. It is
based on determination of the ratio of spectral energetic brightnesses L(λ1, T) and L(λ2, T) of the radiation arriving
from a heated object at a photoreceiver [1, 2]. Determining L(λ1, T)/L(λ2, T), with the ratio ε2

 ⁄ ε1 known beforehand,
we can find the thermodynamic temperature:
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Since the method does not require knowledge of the absolute values of L(λ1, T) and L(λ2, T), the results of determin-
ing T within some limits is independent of the distance to the object and of the variations of uncontrolled parameters
(contamination of an objective, dustiness of the medium, etc.).

The methodological error of the bathochromic method of spectral ratio is equal to [1, 2]
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To eliminate this error, one has to know exactly the ratio of the radiating capacities of the material ε2
 ⁄ ε1, which

under real working conditions is not always possible. To raise the signal/noise ratio, it is desirable to use rather wide
spectral ranges. Here real pyrometric signals will be proportional to

Ui (T) D ∫ 

0

∞

τif (λ) ε (λ, T) S (λ) L (λ, T) dλ = ∫ 
0

∞

ε (λ, T) Si (λ) L (λ, T) dλ . (3)

In using nonmonochromatic spectral ranges, there is sense in talking not about the monochromatic radiating
capacity of the body surface at a certain wavelength λ, but rather about the effective radiating capacity ε (effective
emissivity) which, for the ith spectral range, can be determined as follows:

εi = 
Ui

Ui
bb = 

∫ ε (λ, T) L (λ, T) Si (λ) dλ

∫ L (λ, T) Si (λ) dλ
 . (4)

This technique, referred to in the literature as a direct comparison with a standard [3, 4], is based on the equality
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As a standard, one can use a cavity of cylindrical or conical shape made directly in the sample under control.
At the area of the exit hole that is greatly smaller than the area of the inner surface of the cavity, its emissivity is
close to unity. Thus, by measuring pyrometric signals from the plane portion of the controlled sample surface and
from the cavity, it is possible to determine εi with the aid of Eq. (5). Such an approach is quite acceptable in readjust-
ing the line to a new kind of product, since only one billet of an article is expended for determining the value of εi.

In the case of wide spectral intervals, one fails to obtain a simple analytical expression for T which would be
similar to Eq. (1). Therefore, in describing the proposed algorithm for computing T and investigating its methodologi-
cal errors, we shall avail ourselves of numerical methods.

Nonmonochromatic Method of Spectral Ratio. In measuring the temperature by a nonmonochromatic two-
color pyrometer, at the exit from its detector block the pyrometric signals U1(T) and U2(T) will be formed, which are
described by Eq. (3). In order to determine the thermodynamic temperature T, it is necessary to preliminarily know the
dependence of the ratio of effective emissivities on T:
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Numerical simulation in the MatLab computer mathematics system has shown that the temperature dependence
of the ratio of pyrometric signals for a blackbody (bb) U1

bb ⁄ U2
bb within the range 450–1200 K can well be approxi-

mated by a third-order polynomial:

U1
bb

U2
bb

 C a3T
3
 + a2T

2
 + a1T + a0 . (7)

Figure 1b demonstrates the temperature dependence of the relative deviation of polynomial approximation (in
percent) on the true values of the ratio U1

bb ⁄ U2
bb for different kinds of spectral sensitivity of photodetectors (given in

Fig. 1a). It is seen that in the range 500–1200 K the maximum deviation from the true value of U1
bb ⁄ U2

bb does not
exceed 1%. In order to determine the coefficients of the approximating polynomial ai, one can measure the pyrometric
signals received from the blackbody model. Having determined the ratio U1

bb ⁄ U2
bb for four values of temperature, we

obtain a system of four equations:

Fig. 1. Simulated spectral sensitivities of a photoreceiving device with different
speeds of change in s(λ) (a) and the resulting corresponding temperature de-
pendences of the relative deviation of approximation from the true values of
U1

bb ⁄ U2
bb (b). λ, µm; δ, %; T, K.
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the solution of which yields ai. The values of the coefficients of the polynomial ai depend only on the form of the
spectral sensitivity S(λ) used in the given pyrometer of the radiation detectors; therefore in adjusting the pyrometer,
one calibration against a blackbody will be sufficient.

Since the ratio of the effective radiating capacities ε2
 ⁄ ε1 is a function of temperature, a polynomial approxi-

mation can be applied to it.
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 (T) C ν3T
3
 + ν2T

2
 + ν1T + ν0 . (9)

Figure 2a shows the dependences of the ratio ε2
 ⁄ ε1 on temperature for various materials, and Fig. 2b presents the re-

sulting dependences of the deviation of the polynomial approximation on true values of ε2
 ⁄ ε1. It is seen that these de-

viations do not exceed 0.1%. In order to find the coefficients of the approximating polynomial νi, it is necessary to
obtain the ratio ε2

 ⁄ ε1 for four values of the temperature of the cavity-containing sample. By measuring the ratio of
pyrometric signals from the cavity U1

bb ⁄ U2
bb and knowing the coefficients of ai, we can find the sample temperature T

from Eq. (7). Having measured then the ratio of pyrometric signals for the sample surface U2
 ⁄ U1, we find the ratio

ε2
 ⁄ ε1 for the given temperature from Eq. (6). Thus, we obtain a system of equations for finding νi:
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Now, for the temperature to be found we may compile the equation
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bb
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bb , (11)

which, in using the approximation by the third-order polynomial, takes the form

Fig. 2. Graphs of 
ε2

ε1
(T) for tungsten (1), aluminum (2), iron (3), and alumina

(4) (a) and corresponding temperature dependences of the relative deviation of
polynomial approximation of the function 

ε2

ε1
(T) from its true values (b). δ, %;

T, K.
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By transferring all the terms to the left and grouping the coefficients of the same powers of T, we obtain a
third-degree equation for finding the temperature:
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The graph of the relative error in the determination of the temperature of iron is given in Fig. 3. It is seen from the
figure that the methodological error in the determination of T for iron within the range 500–1200 K does not exceed
1%. The main reason for its appearance in such a technique of temperature determination is the deviation of the poly-
nomial approximations of the functions U1

bb ⁄ U2
bb and ε2

 ⁄ ε1 from their true values. In order to reduce these deviations,
one can use approximation of these functions by a fourth-order polynomial.

The disadvantage for the proposed method is that it requires knowledge of the value of ε2
 ⁄ ε1. Therefore,

under working conditions, in readjusting a line to a new kind of product, for each new material with unknown radia-
tive characteristics one has to carry out measurements for one sample with a cavity at four values of temperature.
After calibration, the values of the coefficients νi obtained for the metal can be preserved to avoid repeated measure-
ments when the metal is used again.

Thus, a technique for determining the thermodynamic temperature by the nonmonochromatic method of spec-
tral ratio has been suggested. Investigation of errors has shown that the methodological error in the determination of
the temperature of iron within 500–1200 K does not exceed 1%.

NOTATION

a0, a1, a2, a3, ν0, ν1, ν2, and ν3, coefficients of approximating polynomials; c2 = 1.43⋅10−2, second radiation

constant, m⋅K; L(λ, T), spectral density of energetic brightness; T, thermodynamic temperature, K; S(λ) and s(λ), ab-

solute and relative sensitivities of the radiation detector at the wavelength λ; Ui, pyrometric signal from a controlled

sample in the ith spectral range, V; Ui
bb, pyrometric signal from a blackbody in the ith spectral range, V; Ui

st, py-

rometric signal from a standard in the ith spectral range, V; δ, relative deviation of the polynomial approximation of

a function from its true values, %; δT, relative error in determination of temperature, %; δsp.r, methodological error in

determination of temperature by the method of spectral ratio; ε, radiating capacity; ε1 and ε2, radiating capacities in

two-channel measurements; εi, effective radiating capacity of a sample in the ith spectral range; εst, radiating capacity

of a standard; λ, radiation wavelength, µm; λ1 and λ2, radiation wavelengths in two-channel measurements, µm; τif,

Fig. 3. Relative error in determination of the temperature of iron in approxima-
tion by third-order (1) and fourth-order (2) polynomials. δ, %; T, K.
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transmission coefficient of an optical filter in the ith spectral range; fj = 
U1

bb

U2
bb

(Tj); qj = 
ε1

ε2
(Tj); Si(λ) = τifS(λ). Sub-

scripts: sp.r, spectral ratio; f, filter; i, 1, 2, subscripts and numbers of spectral channels; j, values of temperature in
simulation of the calibration process. Superscripts: bb, blackbody; st, standard.
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